Evaluating the Performance
of a Portable Version of the
HPGMG Benchmark for

Accelerators

Christopher Daley, Hadia Ahmed, Sam
Williams, Nicholas Wright (LBNL/NERSC),
Mat Colgrove (NVIDIA)

P3HPC 2020 - Sep 1

Office of

;“‘p'x“: U.S. DEPARTMENT OF
3‘ ENERGY Science

Overview NG

® This presentation will evaluate OpenMP target offload and OpenACC
Performance, Portability and Productivity (PPP) for the HPGMG
benchmark

® HPGMG is a Finite Volume Geometric Multigrid benchmark
® OpenMP target offload/OpenACC PPP will be shown for

1. A base version of HPGMG ported from a CUDA Managed Memory
version of HPGMG

2. A new version of HPGMG using explicit data movement instead of
Managed Memory

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

Multigrid methods and HPGMG overview

Multigrid method use a hierarchy
of levels to solve elliptic PDEs:

D Smooth
B Residual
&Restrict

- Bottom Solve

ﬂ Interpolate

flnterpolate (High Order)

» Levels consist of 23, 43, 83, ... grid points (full Multigrid configuration)

« HPGMG divides the level data into blocks and distributes the blocks
across MPI ranks

« HPGMG allocates large data buffers per level: block pointers are used to
read/write at various offsets in these large data buffers

Office of
Science

Code version #1: A Managed Memory
implementation of HPGMG NG

® HPGMG-CUDA is an NVIDIA fork of HPGMG
(https://bitbucket.org/nsakharnykh/hpgmg-cuda)

O Depends on Managed Memory
O Shallow copies a level data structure to the GPU

® We ported HPGMG-CUDA to OpenMP target offload and OpenACC
using the following approach

O Copy the body of the CUDA kernels into new functions

O Replace CUDA thread indexing (blockldx, threadldx) with work-
shared OpenMP target offload / OpenACC loops

O Retain cudaMallocManaged CUDA runtime API calls

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

https://bitbucket.org/nsakharnykh/hpgmg-cuda

J

Platforms used

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 x Intel Skylake 2 x IBM Power 9
Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8 x 16 GB NVIDIAV100 6 x 16 GB NVIDIA V100
CPU-GPU interconnect PCle 3.0 switch NVLink 2.0

Office of

x}“ U.S. DEPARTMENT OF
& ENERGY science

Compilers used

Compiler GPU offload Cori-GPU version Summit version
GCC + NVCC CUDA 7.3.0 + 10.1.244 7.4.0+10.1.243
NVIDIA/PGI OpenACC 20.4 20.1

Cray CCE OpenMP 9.1.0 (LLVM version) -

IBM XL OpenMP - 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

Office of

,J— U.S. DEPARTMENT OF
@ ENERGY science

HPGMG configuration used NEeR

® We used the Top-500 HPGMG configuration: 4th order accurate,
GSRB smoother, and BiCGStab bottom solver

® Grid spacing = 1/512: creates 9 levels from 23 to 5122 grid points
O Maximum box size = 323

® Memory footprint ~38 GiB

CPU-only configuration run on 1 CPU socket: 1 MPI rank per core

® GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per
GPU

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

Managed Memory performance on Summit:

1 Power 9 CPU and 3 Volta GPUs b1
NVCC CUDA: 16x faster than the MPI-
. only configuration on a single CPU (21c)
NVCC CUDA| !
10.1.243 '
: GPU offload using directives can be
PGI OpenACC| ey .
20.1] competitive with CUDA:
XL openmp| PGl OpenACC: 0.89x
16113 | XL OpenMP: 0.70x
Clang OpenMP(:
000 Clang performed poorly because of

00 o 0 15 20 25 3.0 3. 0 4.)
P tsecona 7 M 18 OpenMP runtime overheads (~80% of

total runtime spent in cuMemAlloc and
cuMemFree)

Higher is better

Office of
Science

Managed Memory performance on Cori-GPU:

N -
1 Skylake CPU and 3 Volta GPUs e
NVCC CUDA and PGI OpenACC are
: 2.6x and 3.1x slower on Cori-GPU than
NVCC CUDA ! .
10.1.243 Summit!
PGl OpenACC :
204 3 reasons for the slowdown:
CCE Openmp[| * More page faults
Sl I ¢ * More data movement between CPU
Clang OpenMP| : and GPU
ooy 4 e Lower bandwidth transfers between
0.0 05 1.0 15 D(Z).é)/seijnd 3.0 35 4.0 1;35 CPU and GPU

Higher is better

CCE OpenMP performed poorly because
—O0 compilation used for correctness)) |

Office of
Science

Addressing Managed Memory Performance
Gaps v

® We don’t understand why there were more page faults and data
moved on x86

O The inefficient data transfer could potentially be addressed by
prefetching the data using cudaMemPrefetchAsync() [Future work]

® We do understand that LLVM/Clang performed poorly on x86 and
Power because of significant OpenMP runtime memory management
O There is a repeated transfer of ~1 KB to shallow copy the level data
structure for each OpenMP target region

O Shilei Tian (Stony Brook University) has enhanced the LLVM OpenMP

runtime to buffer target memory instead of returning it to the device:
commit #0289696 (08/19/2020)

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

LLVM Memory Manager significantly
improved Clang performance on Cori-GPU

NS

Nvprof shows significantly less time

NVCC CUDA LLVM Memory spent in memory management API calls
10.1.243| 1] Manager Patch
PGI OpenACC| Original:
20.4 .
34,139 calls to cuMemFree (38.4% time)
cce Opegngag] 34,139 calls to cuMemAlloc (35.5% time)
Clang OpenMP .
Ty e I LLVM Memory Manager Poatch.
00 05 1.0 1.5 2.0 25 3.0 35 4.0 45 0 calls to cuMemFree (0.0% tl_me)
DOF/second le8 5 calls to cuMemAlloc (0.0% time)

Higher is better>

Office of
Science

Modifying the directives further improved
Clang performance on Cori-GPU

Achieved 0.89x of CUDA performance!

NVC1C0 C1U2[ZA3, LLVM Memory
. ' m:;zgf;;’;t;h Required convoluted code changes to
PGI OpenACC| 7 transformation remove user code between “target” and
20.4 “ » g .
parallel” directives to use a faster code
CCE Opegngflg] generation scheme (SPMD):
- https://clang.llvm.org/docs/OpenMPSupp
C'a”gl‘f%e{;.“Qﬁ L ort.html#directives-execution-modes
00 05 1.0 1.5 2.0 25 3.0 35 40 45
DOF/second tes Johannes Doerfert (ANL) has started
—— compiler development work to save users
Higher is better : : o
from manually doing this transformation:

https://reviews.llvm.org/D59319 |

Office of
Science

https://clang.llvm.org/docs/OpenMPSupport.html
https://reviews.llvm.org/D59319

Code Version #2: Explicit data management

- . - NS
using data directives
}/md smooth(level_type level, ...) The Managed Memory version
#pragma omp target teams distribute map(to:level) does a shallow copy of “level” to
for (int blk=0; blk < level.num_my_blocks; blk++) { the device for each target region
void smooth(level_type *level, ...) The explicit data management
{ version creates “level” on the

#pragma omp target teams distribute map(to:level[:0]) device at program start and then
i =0: < -> | ks: blk++ . ““ ”
for (int blk=0; blk < level->num_my_blocks; blk++) { passes a pointer to “level” for

each target region

Thanks to Mat Colgrove for the initial OpenACC implementation

[]

Office of
Science

The “level” data structure is complicated - v,
~250 lines of code to create it on the device 1

typedef struct {

struct {
double * ptr;
! Y i uctu ini
\ /1 ; Oth‘?i variables level type is a nested data structure containin
read, write; . .
} blockCopy type; many pointers and double pointers
t def st t . “ ”
Yodble «: sond buffers; Block pointers (see blockCopy_type “ptr’) may
double ** recv_buffers; be NULL or may point to communicator_type
blockCopy type * blocks[3]; « ff ” “ ”
// + other variables send_buffers” or “recv_buffers

}

communicator_ type;

typedef struct {

PR, U.S. DEPARTMENT OF Offlce of

'ENERGY science

double ** vectors;
communicator type exchange ghosts[STENCIL MAX SHAPES];
communicator type restriction[4];

communicator type interpolation; // + other variables
level type;

[]

PEREFLE!_ LAB

Use “target enter data” to point the block

pointers to device data buffers L
Host Device Host Device
recv_buffer recv_buffer recv_buffer recv_buffer

—> T 1
ptr ptr ptr ptr

for (shape=0; shape<STENCIL _MAX SHAPES; shape++) {
for (block=0; block<3; ++block) { :
for (b=0; b<level->exchange ghosts[shape].num_blocks|block]; ++b) { Upd?te de.VICe
#pragma omp target enter data \ pointer using zerp
map(alloc:level->exchange ghosts[shape].blocks[block][b].read.ptr[:0]) Iength array section

[]

Office of
Science

It worked but exposed issues in multiple v,
compilers —®

® The PGI compiler successfully executed the OpenACC version

® Only LLVM/Clang successfully executed the OpenMP version of the
application

O Runtime errors in XL and CCE compilers

® LLVM/Clang performance was worse than the unoptimized Managed
Memory version of the code

O A profile showed that a huge amount of time was spent in a “target
update from” directive used to copy data from GPU to CPU

O Most of the time was spent in the OpenMP runtime rather than
moving datal

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

Addressing LLVM OpenMP runtime overhead Gamud

® OpenMP runtimes use a present table to maintain the association
between host and device pointers

® We added ~100K entries to the present table when updating HPGMG
block pointers (using “target enter data” directive)

O This caused high lookup time in “target update from” directive
(https://bugs.llvm.org/show_bug.cqgi?id=46107)

® We tested 2 ways to minimize the present table:
1. Don't update a device pointer if the host block pointer is NULL

2. Update the block pointers on the device in a OpenMP target region:
avoids adding an entry to the present table

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

https://bugs.llvm.org/show_bug.cgi?id=46107

Incremental optimizations to improve

LLVM/Clang performance on Summit

(OpenMP (managed))

Initial]
Don't map

NULL pointers |

Minimize the |
present table|

Add CUDA-[
aware MPI :

SPMDize|
kernels C

CUDA (managed)
1
1

00 05 1.0 15 20 25 3.0 35
DOF/second

Higher is better>

Office of
Science

2.0 45
1le8

Present table optimizations
improved performance by 24.2x

CUDA-aware MPIl and SPMD
code transformations improved
performance by another 2.4x

[]

Code version #3: Explicit data management v
using OpenMP runtime API NERSC

® Used separate host and device “level” variables

® Data directives replaced by omp_target_alloc and
omp_target_memcpy (~2x increase in data management code)

Compiler Managed Memory Explicit Mgmt - Explicit Mgmt -
(#1) directives (#2) runtime API (#3)
XLC 16.1.1-5 v X (RE) v
CCE 10.0.2 v X (RE) v
LLVM 11.0.0-git (#17d8334) Vv v v
GCC 9.1.0 (Mentor) v X (CE) v
CE = Compile Error
EEEEEEEEEEEE Office of RE = Runtime Error

ENERGY Science

Explicit data management performance on

N I -
] - ‘ -i
Summit and Cori-GPU
Summit (CUDA (managed)) (CUDA (managed)] Cori-GPU
PGl OpenACC
20.1 ; PGI OpenzAgi :
XL OpenMP| :
16.1.1-5 ' '
T CCE OpenMP| '
' 9.1.0 (-00 used):| '
Clang OpenMP| ' !
11.0.0-git
. Clang OpenMP
GCC OpenMP ' patt
9.1.0 (Mentor) . 11.0.0-git
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

DOF/second le8 DOF/second 1e8
Higher is better> Higher is better>

Explicit data management significantly improves upon Managed Memory
performance on Cori-GPU (x86)

[]

PR, U.S. DEPARTMENT OF Offlce of

. = A
ENERGY scionce el

Conclusions NG

® 3 OpenMP / OpenACC compilers achieved 70-90% of CUDA
performance (LLVM/Clang, XL, PGl)

® OpenMP / OpenACC data directives enabled us to add explicit data
management to HPGMG in a much simpler way than runtime APIs

O Hard to imagine porting HPGMG to runtime API data management
without first starting from a data directive version

O Non-trivial usage of data directives caused issues in 3 OpenMP
compilers (XL, CCE, GCC) [compiler maturity issues]

® Managed Memory performance was relatively poor on x86 whether
using CUDA, OpenACC or OpenMP

O Explicit data management performed well on x86 and Power

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

Thanks for listening)

Contact: csdaley AT Ibl.gov

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

This research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-000R22725.

Office of
Science

