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Overview

● This presentation will evaluate OpenMP target offload and OpenACC 
Performance, Portability and Productivity (PPP) for the HPGMG 
benchmark

● HPGMG is a Finite Volume Geometric Multigrid benchmark
● OpenMP target offload/OpenACC PPP will be shown for

1. A base version of HPGMG ported from a CUDA Managed Memory 
version of HPGMG

2. A new version of HPGMG using explicit data movement instead of 
Managed Memory



Multigrid methods and HPGMG overview
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Multigrid method use a hierarchy 
of levels to solve elliptic PDEs:

• Levels consist of 23, 43, 83, … grid points (full Multigrid configuration)
• HPGMG divides the level data into blocks and distributes the blocks 

across MPI ranks
• HPGMG allocates large data buffers per level: block pointers are used to 

read/write at various offsets in these large data buffers



Code version #1: A Managed Memory 
implementation of HPGMG

● HPGMG-CUDA is an NVIDIA fork of HPGMG 
(https://bitbucket.org/nsakharnykh/hpgmg-cuda)
○ Depends on Managed Memory
○ Shallow copies a level data structure to the GPU

● We ported HPGMG-CUDA to OpenMP target offload and OpenACC 
using the following approach
○ Copy the body of the CUDA kernels into new functions
○ Replace CUDA thread indexing (blockIdx, threadIdx) with work-

shared OpenMP target offload / OpenACC loops
○ Retain cudaMallocManaged CUDA runtime API calls

https://bitbucket.org/nsakharnykh/hpgmg-cuda


Platforms used

Cori-GPU Summit
Node architecture Cray CS-Storm 500NX IBM AC922
Node CPUs 2 x Intel Skylake 2 x IBM Power 9
Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz
Node GPUs 8 x 16 GB NVIDIA V100 6 x 16 GB NVIDIA V100
CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0



Compilers used

Compiler GPU offload Cori-GPU version Summit version
GCC + NVCC CUDA 7.3.0 + 10.1.244 7.4.0 + 10.1.243
NVIDIA/PGI OpenACC 20.4 20.1
Cray CCE OpenMP 9.1.0 (LLVM version) -
IBM XL OpenMP - 16.1.1-5
LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)



HPGMG configuration used

● We used the Top-500 HPGMG configuration: 4th order accurate, 
GSRB smoother, and BiCGStab bottom solver

● Grid spacing = 1/512: creates 9 levels from 23 to 5123 grid points
○ Maximum box size = 323

● Memory footprint ~38 GiB
● CPU-only configuration run on 1 CPU socket: 1 MPI rank per core
● GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per 

GPU



Managed Memory performance on Summit:
1 Power 9 CPU and 3 Volta GPUs

NVCC CUDA: 16x faster than the MPI-
only configuration on a single CPU (21c)

GPU offload using directives can be 
competitive with CUDA:
PGI OpenACC: 0.89x
XL OpenMP: 0.70x

Clang performed poorly because of 
OpenMP runtime overheads (~80% of 
total runtime spent in cuMemAlloc and 
cuMemFree)Higher is better



Managed Memory performance on Cori-GPU:
1 Skylake CPU and 3 Volta GPUs

NVCC CUDA and PGI OpenACC are 

2.6x and 3.1x slower on Cori-GPU than 

Summit!

3 reasons for the slowdown:

• More page faults

• More data movement between CPU 

and GPU

• Lower bandwidth transfers between 

CPU and GPU

CCE OpenMP performed poorly because 

–O0 compilation used for correctness

Higher is better



Addressing Managed Memory Performance 
Gaps

● We don’t understand why there were more page faults and data 
moved on x86
○ The inefficient data transfer could potentially be addressed by 

prefetching the data using cudaMemPrefetchAsync() [Future work]
● We do understand that LLVM/Clang performed poorly on x86 and 

Power because of significant OpenMP runtime memory management
○ There is a repeated transfer of ~1 KB to shallow copy the level data 

structure for each OpenMP target region
○ Shilei Tian (Stony Brook University) has enhanced the LLVM OpenMP 

runtime to buffer target memory instead of returning it to the device: 
commit #0289696 (08/19/2020)



LLVM Memory Manager significantly 
improved Clang performance on Cori-GPU

Nvprof shows significantly less time 
spent in memory management API calls

Original:
34,139 calls to cuMemFree (38.4% time)
34,139 calls to cuMemAlloc (35.5% time)

LLVM Memory Manager Patch:
0 calls to cuMemFree (0.0% time)
5 calls to cuMemAlloc (0.0% time)

Higher is better



Modifying the directives further improved 
Clang performance on Cori-GPU

Achieved 0.89x of CUDA performance!

Required convoluted code changes to 
remove user code between “target” and 
“parallel” directives to use a faster code 
generation scheme (SPMD):
https://clang.llvm.org/docs/OpenMPSupp
ort.html#directives-execution-modes

Johannes Doerfert (ANL) has started 
compiler development work to save users 
from manually doing this transformation:
https://reviews.llvm.org/D59319

Higher is better

https://clang.llvm.org/docs/OpenMPSupport.html
https://reviews.llvm.org/D59319


Code Version #2: Explicit data management 
using data directives

void smooth(level_type level, ...)
{
#pragma omp target teams distribute map(to:level)
for (int blk=0; blk < level.num_my_blocks; blk++) {

void smooth(level_type *level, ...)
{
#pragma omp target teams distribute map(to:level[:0])
for (int blk=0; blk < level->num_my_blocks; blk++) {

The Managed Memory version 
does a shallow copy of “level” to 
the device for each target region

The explicit data management 
version creates “level” on the 
device at program start and then 
passes a pointer to “level” for 
each target region

Thanks to Mat Colgrove for the initial OpenACC implementation  



The “level” data structure is complicated –
~250 lines of code to create it on the device

level_type is a nested data structure containing 
many pointers and double pointers

Block pointers (see blockCopy_type “ptr”) may 
be NULL or may point to communicator_type 
“send_buffers” or “recv_buffers”

typedef struct {
struct {

double * ptr;
// + other variables

} read, write;
} blockCopy_type;

typedef struct {
double ** send_buffers;
double ** recv_buffers;
blockCopy_type * blocks[3];
// + other variables

} communicator_type;

typedef struct {
double ** vectors;
communicator_type exchange_ghosts[STENCIL_MAX_SHAPES];
communicator_type restriction[4];
communicator_type interpolation; // + other variables

} level_type;



Use “target enter data” to point the block 
pointers to device data buffers

for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

#pragma omp target enter data \
map(alloc:level->exchange_ghosts[shape].blocks[block][b].read.ptr[:0])

Update device 
pointer using zero 
length array section
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It worked but exposed issues in multiple 
compilers

● The PGI compiler successfully executed the OpenACC version
● Only LLVM/Clang successfully executed the OpenMP version of the 

application
○ Runtime errors in XL and CCE compilers

● LLVM/Clang performance was worse than the unoptimized Managed 
Memory version of the code
○ A profile showed that a huge amount of time was spent in a “target 

update from” directive used to copy data from GPU to CPU
○ Most of the time was spent in the OpenMP runtime rather than 

moving data!



Addressing LLVM OpenMP runtime overhead

● OpenMP runtimes use a present table to maintain the association 
between host and device pointers

● We added ~100K entries to the present table when updating HPGMG 
block pointers (using “target enter data” directive)
○ This caused high lookup time in “target update from” directive 

(https://bugs.llvm.org/show_bug.cgi?id=46107)
● We tested 2 ways to minimize the present table:

1. Don’t update a device pointer if the host block pointer is NULL
2. Update the block pointers on the device in a OpenMP target region: 

avoids adding an entry to the present table

https://bugs.llvm.org/show_bug.cgi?id=46107


Incremental optimizations to improve 
LLVM/Clang performance on Summit

Present table optimizations 
improved performance by 24.2x

CUDA-aware MPI and SPMD 
code transformations improved 
performance by another 2.4x

Higher is better



Code version #3: Explicit data management 
using OpenMP runtime API

● Used separate host and device “level” variables
● Data directives replaced by omp_target_alloc and 

omp_target_memcpy (~2x increase in data management code)

Compiler Managed Memory
(#1)

Explicit Mgmt -
directives (#2)

Explicit Mgmt -
runtime API (#3)

XLC 16.1.1-5 ✓ ✘ (RE) ✓
CCE 10.0.2 ✓ ✘ (RE) ✓
LLVM 11.0.0-git (#17d8334) ✓ ✓ ✓
GCC 9.1.0 (Mentor) ✓ ✘ (CE) ✓

CE = Compile Error
RE = Runtime Error



Explicit data management performance on 
Summit and Cori-GPU

Summit Cori-GPU

Explicit data management significantly improves upon Managed Memory 
performance on Cori-GPU (x86)

Higher is better Higher is better



Conclusions

● 3 OpenMP / OpenACC compilers achieved 70-90% of CUDA 
performance (LLVM/Clang, XL, PGI)

● OpenMP / OpenACC data directives enabled us to add explicit data 
management to HPGMG in a much simpler way than runtime APIs
○ Hard to imagine porting HPGMG to runtime API data management 

without first starting from a data directive version
○ Non-trivial usage of data directives caused issues in 3 OpenMP 

compilers (XL, CCE, GCC) [compiler maturity issues]
● Managed Memory performance was relatively poor on x86 whether 

using CUDA, OpenACC or OpenMP
○ Explicit data management performed well on x86 and Power



Thanks for listening
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