
Christopher Daley, Hadia Ahmed, Sam
Williams, Nicholas Wright (LBNL/NERSC),
Mat Colgrove (NVIDIA)
P3HPC 2020 – Sep 1

Evaluating the Performance
of a Portable Version of the
HPGMG Benchmark for
Accelerators

Overview

● This presentation will evaluate OpenMP target offload and OpenACC
Performance, Portability and Productivity (PPP) for the HPGMG
benchmark

● HPGMG is a Finite Volume Geometric Multigrid benchmark
● OpenMP target offload/OpenACC PPP will be shown for

1. A base version of HPGMG ported from a CUDA Managed Memory
version of HPGMG

2. A new version of HPGMG using explicit data movement instead of
Managed Memory

Multigrid methods and HPGMG overview

Initial Restriction of RHS

Smooth

Residual

Restrict

Bottom Solve

Interpolate

Interpolate (High Order)

Multigrid method use a hierarchy
of levels to solve elliptic PDEs:

• Levels consist of 23, 43, 83, … grid points (full Multigrid configuration)
• HPGMG divides the level data into blocks and distributes the blocks

across MPI ranks
• HPGMG allocates large data buffers per level: block pointers are used to

read/write at various offsets in these large data buffers

Code version #1: A Managed Memory
implementation of HPGMG

● HPGMG-CUDA is an NVIDIA fork of HPGMG
(https://bitbucket.org/nsakharnykh/hpgmg-cuda)
○ Depends on Managed Memory
○ Shallow copies a level data structure to the GPU

● We ported HPGMG-CUDA to OpenMP target offload and OpenACC
using the following approach
○ Copy the body of the CUDA kernels into new functions
○ Replace CUDA thread indexing (blockIdx, threadIdx) with work-

shared OpenMP target offload / OpenACC loops
○ Retain cudaMallocManaged CUDA runtime API calls

https://bitbucket.org/nsakharnykh/hpgmg-cuda

Platforms used

Cori-GPU Summit
Node architecture Cray CS-Storm 500NX IBM AC922
Node CPUs 2 x Intel Skylake 2 x IBM Power 9
Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz
Node GPUs 8 x 16 GB NVIDIA V100 6 x 16 GB NVIDIA V100
CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

Compilers used

Compiler GPU offload Cori-GPU version Summit version
GCC + NVCC CUDA 7.3.0 + 10.1.244 7.4.0 + 10.1.243
NVIDIA/PGI OpenACC 20.4 20.1
Cray CCE OpenMP 9.1.0 (LLVM version) -
IBM XL OpenMP - 16.1.1-5
LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

HPGMG configuration used

● We used the Top-500 HPGMG configuration: 4th order accurate,
GSRB smoother, and BiCGStab bottom solver

● Grid spacing = 1/512: creates 9 levels from 23 to 5123 grid points
○ Maximum box size = 323

● Memory footprint ~38 GiB
● CPU-only configuration run on 1 CPU socket: 1 MPI rank per core
● GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per

GPU

Managed Memory performance on Summit:
1 Power 9 CPU and 3 Volta GPUs

NVCC CUDA: 16x faster than the MPI-
only configuration on a single CPU (21c)

GPU offload using directives can be
competitive with CUDA:
PGI OpenACC: 0.89x
XL OpenMP: 0.70x

Clang performed poorly because of
OpenMP runtime overheads (~80% of
total runtime spent in cuMemAlloc and
cuMemFree)Higher is better

Managed Memory performance on Cori-GPU:
1 Skylake CPU and 3 Volta GPUs

NVCC CUDA and PGI OpenACC are

2.6x and 3.1x slower on Cori-GPU than

Summit!

3 reasons for the slowdown:

• More page faults

• More data movement between CPU

and GPU

• Lower bandwidth transfers between

CPU and GPU

CCE OpenMP performed poorly because

–O0 compilation used for correctness

Higher is better

Addressing Managed Memory Performance
Gaps

● We don’t understand why there were more page faults and data
moved on x86
○ The inefficient data transfer could potentially be addressed by

prefetching the data using cudaMemPrefetchAsync() [Future work]
● We do understand that LLVM/Clang performed poorly on x86 and

Power because of significant OpenMP runtime memory management
○ There is a repeated transfer of ~1 KB to shallow copy the level data

structure for each OpenMP target region
○ Shilei Tian (Stony Brook University) has enhanced the LLVM OpenMP

runtime to buffer target memory instead of returning it to the device:
commit #0289696 (08/19/2020)

LLVM Memory Manager significantly
improved Clang performance on Cori-GPU

Nvprof shows significantly less time
spent in memory management API calls

Original:
34,139 calls to cuMemFree (38.4% time)
34,139 calls to cuMemAlloc (35.5% time)

LLVM Memory Manager Patch:
0 calls to cuMemFree (0.0% time)
5 calls to cuMemAlloc (0.0% time)

Higher is better

Modifying the directives further improved
Clang performance on Cori-GPU

Achieved 0.89x of CUDA performance!

Required convoluted code changes to
remove user code between “target” and
“parallel” directives to use a faster code
generation scheme (SPMD):
https://clang.llvm.org/docs/OpenMPSupp
ort.html#directives-execution-modes

Johannes Doerfert (ANL) has started
compiler development work to save users
from manually doing this transformation:
https://reviews.llvm.org/D59319

Higher is better

https://clang.llvm.org/docs/OpenMPSupport.html
https://reviews.llvm.org/D59319

Code Version #2: Explicit data management
using data directives

void smooth(level_type level, ...)
{
#pragma omp target teams distribute map(to:level)
for (int blk=0; blk < level.num_my_blocks; blk++) {

void smooth(level_type *level, ...)
{
#pragma omp target teams distribute map(to:level[:0])
for (int blk=0; blk < level->num_my_blocks; blk++) {

The Managed Memory version
does a shallow copy of “level” to
the device for each target region

The explicit data management
version creates “level” on the
device at program start and then
passes a pointer to “level” for
each target region

Thanks to Mat Colgrove for the initial OpenACC implementation

The “level” data structure is complicated –
~250 lines of code to create it on the device

level_type is a nested data structure containing
many pointers and double pointers

Block pointers (see blockCopy_type “ptr”) may
be NULL or may point to communicator_type
“send_buffers” or “recv_buffers”

typedef struct {
struct {

double * ptr;
// + other variables

} read, write;
} blockCopy_type;

typedef struct {
double ** send_buffers;
double ** recv_buffers;
blockCopy_type * blocks[3];
// + other variables

} communicator_type;

typedef struct {
double ** vectors;
communicator_type exchange_ghosts[STENCIL_MAX_SHAPES];
communicator_type restriction[4];
communicator_type interpolation; // + other variables

} level_type;

Use “target enter data” to point the block
pointers to device data buffers

for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

#pragma omp target enter data \
map(alloc:level->exchange_ghosts[shape].blocks[block][b].read.ptr[:0])

Update device
pointer using zero
length array section

recv_buffer

ptr

Host

recv_buffer

ptr

Device

recv_buffer

ptr

Host

recv_buffer

ptr

Device

It worked but exposed issues in multiple
compilers

● The PGI compiler successfully executed the OpenACC version
● Only LLVM/Clang successfully executed the OpenMP version of the

application
○ Runtime errors in XL and CCE compilers

● LLVM/Clang performance was worse than the unoptimized Managed
Memory version of the code
○ A profile showed that a huge amount of time was spent in a “target

update from” directive used to copy data from GPU to CPU
○ Most of the time was spent in the OpenMP runtime rather than

moving data!

Addressing LLVM OpenMP runtime overhead

● OpenMP runtimes use a present table to maintain the association
between host and device pointers

● We added ~100K entries to the present table when updating HPGMG
block pointers (using “target enter data” directive)
○ This caused high lookup time in “target update from” directive

(https://bugs.llvm.org/show_bug.cgi?id=46107)
● We tested 2 ways to minimize the present table:

1. Don’t update a device pointer if the host block pointer is NULL
2. Update the block pointers on the device in a OpenMP target region:

avoids adding an entry to the present table

https://bugs.llvm.org/show_bug.cgi?id=46107

Incremental optimizations to improve
LLVM/Clang performance on Summit

Present table optimizations
improved performance by 24.2x

CUDA-aware MPI and SPMD
code transformations improved
performance by another 2.4x

Higher is better

Code version #3: Explicit data management
using OpenMP runtime API

● Used separate host and device “level” variables
● Data directives replaced by omp_target_alloc and

omp_target_memcpy (~2x increase in data management code)

Compiler Managed Memory
(#1)

Explicit Mgmt -
directives (#2)

Explicit Mgmt -
runtime API (#3)

XLC 16.1.1-5 ✓ ✘ (RE) ✓
CCE 10.0.2 ✓ ✘ (RE) ✓
LLVM 11.0.0-git (#17d8334) ✓ ✓ ✓
GCC 9.1.0 (Mentor) ✓ ✘ (CE) ✓

CE = Compile Error
RE = Runtime Error

Explicit data management performance on
Summit and Cori-GPU

Summit Cori-GPU

Explicit data management significantly improves upon Managed Memory
performance on Cori-GPU (x86)

Higher is better Higher is better

Conclusions

● 3 OpenMP / OpenACC compilers achieved 70-90% of CUDA
performance (LLVM/Clang, XL, PGI)

● OpenMP / OpenACC data directives enabled us to add explicit data
management to HPGMG in a much simpler way than runtime APIs
○ Hard to imagine porting HPGMG to runtime API data management

without first starting from a data directive version
○ Non-trivial usage of data directives caused issues in 3 OpenMP

compilers (XL, CCE, GCC) [compiler maturity issues]
● Managed Memory performance was relatively poor on x86 whether

using CUDA, OpenACC or OpenMP
○ Explicit data management performed well on x86 and Power

Thanks for listening

Contact: csdaley AT lbl.gov

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

This research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725.

