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Today’s Parallel Applications
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Real-world Problems

- Insufficient parallelism imposed by the programming
model
* OpenMP: enforced barrier at end of parallel loop

- MPI: global (communication) barrier after each time step

- Over-synchronization of more things than required by algorithm
* MPI: Lock-step between nodes (ranks)

- Insufficient coordination between on-node and off-node parallelism
- MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

- Distinct programming models for different types of parallelism
« Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.
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The Challenges

- We need to find a usable way to fully parallelize
our applications

- Goals are:

- Expose asynchrony to the programmer without exposing
additional concurrency

- Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

- Provide manageable APIs and paradigms for uniformly
handling parallelism
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HPX

The C++ Standards Library for Concurrency and Parallelism
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https://github.com/STEIIAR-GROUP/hpx
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HPX - The C++ Standards Library
for Concurrency and Parallelism

- Exposes a coherent and uniform, standards-oriented
API for ease of programming parallel, distributed,
and heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of
millions of threads.

* Provides unified syntax and semantics for local and remote
operations.
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- Enables using the Asynchronous C++ Standard
Programming Model
- Emergent auto-parallelization, intrinsic hiding of latencies,
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HPX - The API

- As close as possible to C++ standard library, where appropriate, for instance

* std::thread, std::;jthread hpx::thread (C++11), hpx::;jthread (C++20)

+ std::mutex hpx::mutex

- std::future hpx::future (including N4538, ‘Concurrency TS) .

- std::async hpx::async (including N3632) ct)

- std::for_each(par, ...), etc. hpx::for_each (C++17) 3

- std::latch, std::barrier hpx::latch, hpx::barrier % .
- std::experimental::task_block hpx::experimental::task_block (TS V2) é’é
- std::experimental::for_loop hpx::experimental::for_loop (TS V2) g %
- std::bind hpx::bind %‘:3
* std::function hpx::function ?g
+ std::any hpx::any (C++20) § i
« std::cout hpx::cout Eé
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Parallel Algorithms (

++17)
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The Future of
Computation
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What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way 1s to use (std) async:

int universal answer() { return 42; }

void deep thought()
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What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization

. , with producer .

Future object I\ Locality 2 :
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Parallel Quicksort
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Parallel Quicksort: Parallel
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Parallel Quicksort: Futurized
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Parallel Quicksort: co_await

(C++20)
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Extending Parallel Algorithms
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Sean Parent: C++ Seasoning, Going Native 2013
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Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013
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Extending Parallel Algorithms

- New algorithm: gather_async
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Futurization

- Technique allowing to automatically transform code
- Delay direct execution in order to reduce synchronization
* Turns ‘straight’ code into ‘futurized’ code

- Code no longer calculates results, but generates an execution tree
representing the original algorithm

- If the tree 1s executed 1t produces the same result as the original
code

* The execution of the tree 1s performed with maximum speed,
depending only on the data dependencies of the original code

- Execution exposes the emergent property of being auto-
parallelized
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Recent Results

@ STE||AR GROUP




Merging White Dwarfs
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Orbits: 4.13005
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Adaptive Mesh Refinement
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Adaptive Mesh Refinement

Strong-scaling efficiency: 68.1%
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Weak-scaling efficiency: 78.4%
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The Solution to the Application
Problem
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The Solution to the Application
Problems
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CENTER FOR COMPUTATION
& TECHNOLOGY

4L
4L
O
o]
o
5}
]
=]
=
o
an
.5
£
g
S
&b
o
<
[a W
&
=]
=]
g
o
<
<
Q
=]
>
n
<

DO
N

9/3/2020

=~
D)
wn
‘T
N
+©
-
g
e
—
(o]
a
—
(e}
AN
(@}
AN
&)
[a T
o=
(ap]
)




