Asynchronous
Programming in
Modern C++

Hartmut Kaiser (hkaiser@cct.lsu.edu)

Today’s Parallel Applications

60s 80s 100 s 120s

* : : : ar
thread 8 55
thread 9 =
thread 10 'g)
thread 11 é’
thread 12 o o=
thread 13 Sm .?é
thread 14 = Q
thread 15 g 5
thread 16 S g
thread 17 ?gg *é
thread 18 d: |
thread 19 2
thread 20 § S
thread 21 é g
thread 22 S A
thread 23 % Cmn
thread 24 <&
thread 25

@ STE||AR GROUP

]
N
S
2\
=~
ap)
=~
(o))

Real-world Problems

- Insufficient parallelism imposed by the programming
model
* OpenMP: enforced barrier at end of parallel loop

- MPI: global (communication) barrier after each time step

- Over-synchronization of more things than required by algorithm
* MPI: Lock-step between nodes (ranks)

- Insufficient coordination between on-node and off-node parallelism
- MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

- Distinct programming models for different types of parallelism
« Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.

Asynchronous Programming in Modern C++

(P3HPC 2020) Hartmut Kaiser

@ STE||AR GROUP

9/3/2020

The Challenges

- We need to find a usable way to fully parallelize
our applications

- Goals are:

- Expose asynchrony to the programmer without exposing
additional concurrency

- Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

- Provide manageable APIs and paradigms for uniformly
handling parallelism

=)
—
5}
(=}
=}
g
—
a0
b=
=
=
S
iy
a0
o
<
A~
&
=

=
0]

,
o
<
N
45
=
=i
+
P~
<
A
~
S
N
S
A
@)
W
a
e
&

Asynchrono

@ STE||AR GROUP

9/3/2020

HPX

The C++ Standards Library for Concurrency and Parallelism

+
+
(@]
=i
o
&)
")
)
=
=i
o=
on
=i
g
S
(=]
[y
=
a0
<
-
ol
E
-
(@)
=i
o
S
<
Q
g
>

e
[eb]
wn
o
fa]
n
-+
=
=}
A
r~
C":‘
T
3
AN
(@)}
AN
&)
[l
T
%)
&

https://github.com/STEIIAR-GROUP/hpx

@ STE||AR GROUP

https://github.com/STEllAR-GROUP/hpx

9/3/2020

HPX - The C++ Standards Library
for Concurrency and Parallelism

- Exposes a coherent and uniform, standards-oriented
API for ease of programming parallel, distributed,
and heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of
millions of threads.

* Provides unified syntax and semantics for local and remote
operations.

s
+
O
=)
~
o))
e
S
=
g
an
=)
=

e
[eb]
wn
o
fa]
n
-+~
=
=}
A
~
(av]
T
—~
(@)
AN
(@)
AN
&)
[l
T
(ap]
&

us Pl‘og‘ramm

- Enables using the Asynchronous C++ Standard
Programming Model
- Emergent auto-parallelization, intrinsic hiding of latencies,

Asynchrono

@ STE||AR GROUP

HPX - The API

- As close as possible to C++ standard library, where appropriate, for instance

* std::thread, std::;jthread hpx::thread (C++11), hpx::;jthread (C++20)

+ std::mutex hpx::mutex

- std::future hpx::future (including N4538, ‘Concurrency TS) .

- std::async hpx::async (including N3632) ct)

- std::for_each(par, ...), etc. hpx::for_each (C++17) 3

- std::latch, std::barrier hpx::latch, hpx::barrier % .
- std::experimental::task_block hpx::experimental::task_block (TS V2) é’é
- std::experimental::for_loop hpx::experimental::for_loop (TS V2) g %
- std::bind hpx::bind %‘:3
* std::function hpx::function ?g
+ std::any hpx::any (C++20) § i
« std::cout hpx::cout Eé

@ STE||AR GROUP

Parallel Algorithms (

++17)

adjacent difference

copy

count_if
fill n

find if
generate
inner product

is_partitioned
max_element
mismatch

partial sort
reduce

remove if
replace_ if
rotate_copy
set_intersection
stable partition
uninitialized copy
unigque

adjacent_find

copy_ if

egqual

find

find if not
generate n
inplace_merge
is_sorted

merge

move

partial sort_copy
remove

replace

reverse

search
set_symmetric_difference
stable_sort
uninitialized copy n
unigque copy

all of

copy_n
exclusive_scan
find end
for_each
includes
is_heap
is_sorted until
min element
none_of
partition
remove_copy
replace_copy
reverse_copy
search n
set_union
swap_ranges
uninitialized fill

any of

count

fill

find first of
for each n
inclusive_scan
is_heap until

lexicographical_ compare

minmax element
nth_element
partition copy
remove copy_ if
replace_copy_ if
rotate
set_difference
sort

transform

uninitialized fill n

@ STE||AR GROUP

+
+
O
g
—
5}
e
S
=
=
=i
on
=)
=
=
=
S
iy
a0
o
<
A~
0
=
=}
g
<
~
<
Q
g
)
ég

e
[eb]
wn
o
fa]
n
-+
=
g
4'._3
~
(av]
T
—~
(@)
AN
(@)
AN
&)
[l
T
on
&

The Future of
Computation

9/3/2020

-
@)
~
QG
o
o
S
—
ety
=i
=
=
=}
(o]
g
QN
(@)
e

A
—

~
0]
w0
) o i
<
N4
JL5)
—
o
=}
+
—
<
~
S
N
S
A
=
o
ol
~—

chrono

Asyn

@ STE||AR GROUP

What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way 1s to use (std) async:

int universal answer() { return 42; }

void deep thought()

+
+
(@)

. . - ks
future<int> promised answer = async(&universal answer); =
// do other things for 7.5 million years =

Ld Ld Q—i
cout << promised answer.get() << endl; // prints 42 2o
} =
= O
o A
£ o
<&

@ STE||AR GROUP

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization

. , with producer .

Future object I\ Locality 2 :

Suspend : e Execute " HideS nOtiOn Of deahng Wlth threads %EJ

S

consumer =0 1| Future: §
thread ' - = Represents a data-dependency 2 5
Ly on .4
Execute I - thread 512
another JC i L. = Makes asynchrony manageable e
= s =
thread A Result is being = Allows for composition of several 22
R returned asynchronous operations 22
consumer g ?]
. . .Yr:(Q
thread = (Turns concurrency into parallelism) SE
ZE

@ STE||AR GROUP

Jostey mureq (0203 OdHED)
++)) WISPOJA UL SUTWUWIRIZO0I] SNOUOIYIUASY

030¢/€/6

1S11

ive Parallel

Recurs

@ STE||AR GROUP

Parallel Quicksort

@ STE||AR GROUP

Parallel Quicksort: Parallel

@ STE||AR GROUP

Parallel Quicksort: Futurized

@ STE||AR GROUP

Parallel Quicksort: co_await

(C++20)

@ STE||AR GROUP

Jostey mureq (0203 OdHED)
++)) WISPOJA UL SUTWUWIRIZO0I] SNOUOIYIUASY

1511

Iterative Parallel

@ STE||AR GROUP

Extending Parallel Algorithms

= =

+
+
O
g
o
5]
el
=
g
o
an
=)
=
=
=
<
&
on
©)
S
A~
n
=
Q
g
e
<
<
Q
g
~
4

N
(b}
n
e
:2
=
=
=i
-
=
<
A
~~~
(e}
N
S
A
@)
W
a
e
Ay
=

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP



Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP



Extending Parallel Algorithms

- New algorithm: gather_async

@ STE||AR GROUP



9/3/2020

Futurization

- Technique allowing to automatically transform code
- Delay direct execution in order to reduce synchronization
* Turns ‘straight’ code into ‘futurized’ code

- Code no longer calculates results, but generates an execution tree
representing the original algorithm

- If the tree 1s executed 1t produces the same result as the original
code

* The execution of the tree 1s performed with maximum speed,
depending only on the data dependencies of the original code

- Execution exposes the emergent property of being auto-
parallelized

+
+
O
=
~
[5)
]
=
g
o=
on
=)
g
S
=}
[y
=
o0
o
=
ol
w0
o]
(@)
=)
e
~
<
Q
g
>
<

e
[eb]
wn
N ]
fa]
n
~—
=
=}
A
~
(av]
T
~~
(@)
AN
(@)
AN
&)
[l
T
(ap]
&

@ STE||AR GROUP



Jostey mureq (0203 OdHED)
++0) WIOPOJA] UL SUTWUWBLI0L] SNOUOIYIUASY

020¢/¢€/6

Recent Results

@ STE||AR GROUP




Merging White Dwarfs

@ STE||AR GROUP

Orbits: 4.13005

Primary Star  Donor Star
Density Density

3e+3 Max 2e+l Max
le-3 Refine
le=3-Refine
T le-5
- le-5

le-7

.nié:ﬁqhnnqw

+
+
O
E:
i
[5)
]
2O
g
o=
on
=)
g
=
=}
(o]
=
o0
o
<
ol
w0
o]
=)
=)
e
~
<
Q
S
>
<

=
0]
2]
o
\Cj
(A
-
=
=i
+
~
<
am
~~~
S
N
S
A
@)
Ay
am
e
Ay
N’

9/3/2020

JOSTEY[INUWIYIR 7072 e
020z/2/6 rey] e (0603 DdHED)

++) WIOPOTA] UL SUTWUWBISOIJ SNOUOIIUASY

T
T

Time:1e-98

DB: X.0.silo
Cycle: 0
Mesh

Var. mesh

Adaptive Mesh Refinement

@ STE||AR GROUP

Tostey] uneH (0308 OdHED) LO
0¢0¢/€/6 ++0) WISPOJA] Ul SUTWRIS0I] SNOUOIYIUASY 2

a.
=
o)
(=4
o
(-4
<
M)
[
(7))
~

Adaptive Mesh Refinement

Strong-scaling efficiency: 68.1%

[N}

29 - .

Weak-scaling efficiency: 78.4%

evel 14 —e— Level 14 ||
—m— Level 15 —m— Level 15
—4— Level 16 —— Level 16
—+— Level 17 —+— Level 17

25 27 29 211 213

Number of nodes

Speedup w.r.t sub-grids on one node

+
+
@)
g
~
)
=
=
c
o
on
S
R=
g
=)
oy
&
o0
©
<
A~
)
=3
Q
S
e
~
s
)
=
>
<

=
0]
2]
o
\Cj
(A
-
=
=i
+
~
<
am
~~~
S
N
S
A
@)
Ay
am
e
Ay
N’

@ STE||AR GROUP




The Solution to the Application
Problem

0s 20s 40's 60 80s 100 s 120's

thread 8

thread 9

thread 10

thread 11

thread 12

thread 13 : :

thread 14 thread 8 i

thread 15 : thread 9 Lﬂ)

thread 16 : thread 10 :

thread 17 thread 11 E

thread 18 thread 12 :

thread 19 thread 13 | g QE

thread 20 thread14 @ || A

thread 21 thread 15 é %

thread 22 thread 16 § :

thread 23 thread 17 SVD é

thread 24 thread 18 : £

thread 25 thread 19 QJ-; )
thread 20 5 g
thread 21 :5 3
thread 22 % %i
thread 23 %
thread 24 <€ =
thread 25

@ STE||AR GROUP




9/3/2020

The Solution to the Application
Problems

+
+
=
g
Q
=}
=
N
=)
—
=
=}
£
on
o
]
[aW

=~
(D)
n
e
<
=
=
&
—
©
~
<
s
—~
S
N
=
(]
QO
ol
s
an
ol
N’

Asynchronous

@ STE||AR GROUP



CENTER FOR COMPUTATION
& TECHNOLOGY

4L
4L
O
o]
o
5}
]
=]
=
o
an
.5
£
g
S
&b
o
<
[a W
&
=]
=]
g
o
<
<
Q
=]
>
n
<

DO
N

9/3/2020

=~
D)
wn
‘T
N
+©
-
g
e
—
(o]
a
—
(e}
AN
(@}
AN
&)
[a T
o=
(ap]
)




