Microbiomes are Critical to Energy and the Environment

- **Microbes**: single cell organisms, such as bacteria and viruses
- **Microbiomes**: communities of 1000s of microbial species, less than 1% individually culturable in a lab (and thus sequenced)
- **Metagenomics**: genome sequencing on these communities (growing exponentially)

Smith-Waterman, core of assembly.

At the core of most assembly frameworks
Smith-Waterman algorithm aligns sequences.

This alignment information is used to stitch together different overlapping parts of the genome.

This information can be used to assemble a complete genome.

Cell dependencies and memory access pattern

- Each cell depends on its top, top diagonal and cell on the left.
- This restricts parallelism along the minor-diagonal.
- This results in each thread accessing a memory location 200 bytes apart

Register shuffle for inter-thread communication

Inter-warp communications go through shared memory

Edge cases are dealt with shared memory

Warp shuffle intrinsics are used for inter-thread communication, last three diagonals are stored within registers.

Diagonal Major Indexing

For traceback phase, complete matrix needs to be stored.

Matrix is re-organized such that anti-diagonal elements occupy contiguous memory locations.

Performance

- Cori GPU (V100) Nodes were used for GPU runs.
- Cori Haswell Nodes were used for CPU runs.
- \(\text{GCLUPS} = \frac{\text{Total Cells}}{\text{Time}} \)

\[
\begin{align*}
\text{DNA-1} & \rightarrow 32.2 \text{ mil. alns.} \\
\text{DNA-2} & \rightarrow 8.8 \text{ mil. alns.} \\
\text{DNA-3} & \rightarrow 16.1 \text{ mil. Alns.} \\
\end{align*}
\]

Portability

- CUDA Kernel was ported to HIP using hipify-perl.
- Shuffle intrinsics and error checks had to be hand converted.
- No compromise on performance was observed.
- rocm 3.3.0 was used for these runs