HPC Workflows a’ Comin’
CJ Newburn, HPC Lead for NV Compute SW
P3HPC Forum, Sep 2, 2020
- A new era: workloads → workflows
- HPC x AI
- HPC at the Edge
- Towards a metaflow and common infrastructure
- Where, what, and how
- The 3 Ps

An invitation to collaborate
Workloads: First there was simple HPC

One and done

Data → Compute, e.g. mod/sim → Output
Workflows: Then there were mashups - light, accurate, realtime

Complex inter-relationships of stages vs. one and done
Common interests for workflows

Relatively-new characteristics

- HPC practitioners are being presented with a new set work workflows
 - *Mashup* of HPC, data analytics, deep learning, visualization
 - Data + *metadata*
 - Common data *representation* and *interoperability* are key
 - Moving toward higher-level *abstractions*, reusable infrastructure
 - *Projection* of numerical data into consumable insight (vis) with automated action
 - *Orchestration*, management, containers
 - *Monitoring* for bottlenecks and continuous improvement
- Performance, portability, and productivity all have a part to play
Fully-integrated AI-assisted HPC simulation

Enables new science in areas like CoViD-19

- DeepDriveMD: protein folding, docking
- ATOM: molecular design tools
- ProtTrans: computational biology ~ natural language processing (link)
- Physics-inspired DL to characterize black hole mergers (link)
- ECMWF: Weather modeling
SARS-CoV-2 target identification

- Network-based methods for host pathogen interactions
 - PDB dataset
 - Candidate targets
 - AI-based loop modeling and structures

Multi-scale, multi-resolution modeling of the SARS-CoV-2 viral proteins

- Workflow 0
 - Drug Databases (ENAMIN, DRUGBANK, ZINC, etc.)
 - Featurization (MOdred, graph/neural fingerprints)
 - Physics-based Docking
 - RL-Dock: AI approach

- Workflow 1a, 1b
 - Active learning strategies for virtual screening (Rick Stevens)
 - 10,000,000,000 compounds screened with AI models
 - Top 2.5%
 - 250,000,000 poses docked
 - 6,250,000 systems build and minimized
 - Top 2.5%
 - 156,250 systems simulated
 - (that's about 12H on 1024 summit nodes)

- Workflow 2a
 - AI-based consensus ranking / scoring

- Workflow 2b
 - Physics-based Docking
 - RL-Dock: AI approach
 - AI-based consensus ranking / scoring

Drug Databases
- ENAMIN, DRUGBANK, ZINC, etc.

Featurization
- MOdred, graph/neural fingerprints

Physics-based Docking

RL-Dock: AI approach

Active learning strategies for virtual screening
- 10,000,000,000 compounds screened with AI models
- Top 2.5%
- 250,000,000 poses docked
- 6,250,000 systems build and minimized
- Top 2.5%
- 156,250 systems simulated
- (that's about 12H on 1024 summit nodes)

Top 2.5%
Top 2.5%
Top 2.5%

Thank you to Rick Stevens, Arvind Ramanathan, Shantenu Jha, Rommie Amaro, Carlos Simmerling.

Workflow 0
- Drug Databases
- Featurization
- Physics-based Docking
- RL-Dock: AI approach

Workflow 1a, 1b
- Active learning strategies
- 10,000,000,000 compounds screened
- Top 2.5%
- 250,000,000 poses docked
- 6,250,000 systems built
- Top 2.5%
- 156,250 systems simulated
- (about 12H on 1024 summit nodes)

Workflow 2a
- AI-based consensus ranking / scoring

Workflow 2b
- Physics-based Docking
- RL-Dock: AI approach
- AI-based consensus ranking / scoring

DeepDriveMD: AI-driven adaptive sampling/simulations

Drug Databases
- ENAMIN, DRUGBANK, ZINC, etc.

Featurization
- MOdred, graph/neural fingerprints

Physics-based Docking

RL-Dock: AI approach

AI-based consensus ranking / scoring

Metadata
- DeepDriveMD: AI-driven adaptive sampling/simulations

Projections
- Mashup
- Monitoring
- Interop
- Orchestration

References
ATOM design tools will be applied to propose new improved molecular structures

Machine Learning/Docking Pipeline
- Efficacy
- Safety
- PK
- Developability

Design Criteria
- Preparing to order first 100 molecules for experimental testing
- Experimental binding assay readout

Generative network trained on potent molecules

Decoder

Encode

Parallel Molecular Docking

~1% of compounds ML & MM/GBSA Rescoring

~26 M compounds

Working Compound Library

~1000 Compounds MD simulations

Courtesy of Brian Van Essen, LLNL
HPC at the Edge usage models

HPC at the Edge: realtime compute at edge → lower bandwidth, higher quality data back to DC

- Light sources at LBNL, BNL, ANL, SLAC
- VA Tech: Microtomography
- Health: NVIDIA Clara
Representations:
- `MsgPack → Arrow?`

Orchestration, monitoring:
- *ad hoc* → *central*

Data Pilot driving interop

Metadata to MongoDB

Projections: realtime vis for quality verification

Abstractions

Data pipeline typical of several beamlines at the ALS: imaging, scattering, micro-diffraction, hybrid.
Multiple light sources do similar operations
Toward shared DoE infrastructure

Build once, use everywhere
Toward commonality and integration on the data plane

A Systemic Approach to Facilitating Reproducibility via Federated, End-to-End Data Management
Dale Stansberry, Suhas Somnath, Gregory Shutt, and Mallikarjun Shankar @ ORNL, Advanced Data and Workflows Group

Inadequate metadata for AI Containers
Orchestration/security
Higher-level APIs
Edge-to-exascale workflow (control, interactive steering, design of experiment)
Data lifecycle management
Each measurement takes ~4 seconds

We need to optimize sampling in the (x,y) space

Utilize active learning

Sample 10% pixels initially

RED = Edge Compute

Representation: pyUSID

Dimensionality Reduction

Select Next pixels; Measure

mashup

Gaussian Process to predict unobserved pixels

Criterion

E.g. max uncertainty
Max area
Etc.

interop

Dimensionality Reduction

Courtesy of Rama Vasudevan, ORNL.CNMS

T. Naughton, S. Hitefield, L. Sorrillo, N. Rao, J. Kohl, W. Elwasif, J-C. Bilheux, H. Bilheux, S. Boehm, J. Kincl, S. Sen and N. Imam @ ORNL

Perf: device → HPC resources
Portability: OSS toolkit, many sites
Productivity: time to discovery
Abstraction: plugins, Python APIs
Mashup, sched/orch, interop, vis
MANTiD @ ORNL

“Performance improvements on SNS and HFIR instrument data reduction workflows using Mantid”

William F Godoy, Pete Peterson, Steven Hahn, John Hetrick, Jay Billings @ ORNL

Perf: focused on IO
Mashup of HPC, analytics, DL, vis
Common data rep, interop
Higher-level abstractions, building blks
Monitoring
Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows with AI and HPC: J McClure, J Yin, R Armstrong, K Maheshwari, S Wilkinson, L Vlcek, Y Wang, M Berrill, M Rivers

Perf: data bottleneck
Mashup, vis, metadata
NVIDIA Clara for Healthcare

Orchestration, monitoring: EGX
Interop among stages

Metadata
mashup

DICOM Adaptor (DICOM to/from MHD)
AI Assisted Annotation (AIAA)
Data Converter (DICOM to NIfTI)

Pre-Trained Models
Transfer Learning Toolkit (TLT)
Federated Learning

Inference (TensorRT)
Visualization

abstractions
projections
New workloads → workflows for a new era

Mash-up of HPC, DL, DA, Vis in accelerated systems vs. just CPUs

Beginning to explore rich interaction among stages
Interaction among stages: Sensors+HPC+DA+Vis

Combine sensor data with simulation, analyze, visualize
Data assimilation (e.g., 4D-Var)

Weather Model
Observational Data
sparse satellite observations

DL Model Correction

Advance step

Corrected prediction

Abstraction: PyTorch

Projections: progress, output

Orchestration and containers

Monitoring

Advance step

Learning

Mashup of sim, DL, vis

sparse satellite observations

HPCxAI

requires tight integration of AI and simulation

monitoring training/sim cycle for potential instabilities

Courtesy Thorsten Kurth. Exploratory effort with ECMWF
Interaction among stages: Sensors+HPC+DL/ML+DA+Vis

Augment model training with sensor data that corrects simulation
Interaction among stages:
Sensors+HPC+DL/ML+DA+Vis+Ctrl

Use of model to shorten feedback loop: correct setup, increase sampling of what’s unexpected
Common building blocks in various stages

Build up perf-tuned, portable/HLL building blocks to enhance productivity
Where should the action be?

Compute, storage, learning/inference

- Near the edge
 - Create higher-quality data to send to datacenter at lower bandwidth
 - Data may have locality at the edge, e.g. industrial control
 - Local learning, local activities related to federated learning
 - Inference, and an increasing fraction of training
- Fungible - either DC or edge (portable)
 - Computing platform is common between sensors and base station/datacenter
- In the base station or datacenter (if security allows)
 - Very-large-scale strong scaling, not power constrained
 - Persistent, longitudinal data
 - Complex learning, in service of transfer learning
 - Human-experimental interaction
 - Hub for federated learning
Converting numerical data into insightful projection

Lossy but discriminant compression/distillation of data that enables targeted action

- **Trends**
 - Sensor fusion of multi-modal sensor input, e.g. pressure, vibration, IR, temperature
 - Make data more accessible to humans or to AI networks
 - Augmented input: Fake info to support perception, e.g. color, lens flare
 - Simulation results comparisons become “observables”

- **Challenges**
 - Interoperability between data representations, tool diversity
 - Life-like cinema comes to science: Omniverse, Paraview, Houdini; auto-driving

- **Where can you “in situ” it?**
 - Edge - non-human agent is automated to reduce latency, effort
 - Datacenter - refined human perception: insight, education, marketing/Hollywood
Orchestration, monitoring, and resilience

- **Workload**: run ‘til it’s done
- **Workflow**: tune during the run
- **Needs**
 - Observability/monitoring, (health/effectiveness) analysis, vis
 - During the run, from cloud adaptively resched, re-orchestrate
 - Recover from transient and permanent failures, disconnection
 - Easy, secure, automated update
 - K8s device plugins, GPU operators
- **Reference**: **EGX**
 - “Orchestration for the Edge” at ISC20.HPCW
Performance, portability, productivity

Monitoring and continuous improvement of all of these

- **Performance**
 - Data movement, access, management - MagnumIO for multi-GPU, multi-node
 - Spanning nodes, processes, containers - best practices
 - Representations - numpy/cupy arrays, Arrow, USD, pyUSID, MsgPack, DICOM, NIfTI

- **Portability**
 - CPU and GPU versions of building blocks
 - Relocatable work: near the edge or back in the data center

- **Productivity**
 - Building blocks and higher-level abstractions, C++ and Python
Call to action
An invitation to collaborate as we begin a new era

- Workflows vs. workloads: mashups, interoperability, data representation, metadata, orchestration/containers/monitoring, abstractions, projections/vis
- Performance: Data movement, access, management, representation
- Portability: CPU/GPU, shift work/data/vis to where it makes most sense
- Productivity: increasing communal pool of building blocks on common platform
- Share workflows, help find commonality, build platform-level infrastructure