Performance and portability of abstract algebra operations in C++, Python, and Julia

Jess Woods, Ada Sedova, Oscar Hernandez

Post-Bachelors Intern

Computer Science Research Group
Computer Science and Mathematics Division

Oak Ridge, Tennessee
August 26, 2020
What is the best way to program a supercomputer?
Our Use Case

Library for abstract algebra operations (e.g. matrix multiplication, addition) on very big integers (up to 2^{10000})

Type of Work
- Partitioning arrays of big integers
- Data parallel work
- Reducing lists in uncommon ways

Big Integer Applications
- Cosmology
- Hash tables
- Random numbers/probability simulations
- Exact precision
Our Implementations

- DASK
- OpenMP®
- Julia
Performance
The graphs show the speedup of different computing methods as the number of cores increases:

Main Computation, Small
- C++ Threads
- C++ Tasks
- Julia Threads
- Dask Threads
- Dask Processes
- Dask Distributed

Main Computation, Large
- C++ Threads
- C++ Tasks
- Julia Threads
- Dask Threads
- Dask Processes
- Dask Distributed
Portability
Portability

Python

```python
import dask
dask.config.set(scheduler='threads')

from dask.distributed import Client
if __name__ == '__main__':
    file = os.getenv('MEMBERWORK') + '/gen010/my-scheduler.json'
    client = Client(scheduler_file=file)
```

- Simple/drop-in changes for GPUs

C++

```cpp
#ifdef _OPENMP
    #include "omp.h"
#else
    #define omp_get_max_threads() 0
#endif
```
Portability Challenges

- POWER9 processors
- Unique supercomputer security, architecture
- Julia building and distribution issues
- Dask setup and troubleshooting issues
Programmability

Python
- Everyone inside/outside CS already knows it
- High-productivity
- Requires outside libraries (Dask, sympy, gmpy2)
- Dask requires experimentation

C++
- Compiles to efficient C
- Requires CS knowledge
- Time consuming fine-tuning
- Race conditions and big number stack size issues

Julia
- New, unknown
- High-productivity
- Python like syntax
- Built-in constructs for parallelism, distribution, big number handling, and more!
Programmability Challenges

• Holding and processing big integers
 • Outside libraries vs native structures
• How to schedule “tasks”
Code Comparison

C++

```c++
#pragma omp parallel
{
#pragma omp for nowait
    for (int i = 0; i < p_l; i++)
    {
        // m_ii
        m_xi[i] = m[i]*x[i];
        // b_ii
        m_ii[i] = m_ii[i] + m_ii[i];
        // b_x
        mpz_class lb = power(-2, p_alphai);
        mpz_class ub = power(2, p_alphai);
        mpz_class bi = m_class_state.x_range(ub-lb);
        bi = bi + lb;
        bi_ii[i] = bi_ii[i];
    }
}
```

Python

```python
Threads.@threads for i = 1:l
    m_xi[i] = (x[i] - x_deltas[i]) @ m[i]
    bi_ii[i] = (i[i] - i_deltas[i]) @ bi[i]
end
Threads.@threads for i = 1:tau
    b_x[i] = (x[i] - x_deltas[i]) @ b[i]
end

big_sum::BigInt = reduce(+, m_xi) + reduce(+, b_x) + reduce(+, bi_ii)
return mod_neat(big_sum, x0)
```

Julia

```julia
#pragma omp for
    for (int i = 0; i < p_tau; i++)
    {
        mpz_class lb = power(-2, p_alpha);
        mpz_class ub = power(2, p_alpha);
        mpz_class b = m_class_state.z_range(ub-lb);
        b = b + lb;
        b_x[i] = b_x[i];
    }
}
```

// Summation

```julia
mpz_class big_sum = sum_array(m_xi) + sum_array(bi_ii) + sum_array(b_x);
mpz_class c = modNear(big_sum, p_x0);
return c;
```
Useful and Fun Julia Constructs

- Dynamic, high-level syntax
- JIT compilation
- Optional typing, type inference
- Simple core, easy to learn, free and open-source
- Function closures
- C and Fortran calling
- Metaprogramming
- Array broadcasting
- Built-in parallelism, distributed computing
Julia Example

```julia
function generate(array::Array{Int64,1})
    m = array .+ 1

    Multiply = function(x)
        return x .* m
    end

    Add = function(x)
        return x .+ m
    end

    return Multiply, Add
end
```

```
array = [0,1,2]
3-element Array{Int64,1}:
  0
  1
  2

M,A = generate(array)
(var"#5#7"{Array[Int64,1]}([1, 2, 3]), var"#6#8"{Array[Int64,1]}([1, 2, 3])))

M(2)
3-element Array{Int64,1}:
  2
  4
  6

A(7)
3-element Array{Int64,1}:
  8
  9
 10

A(M(0))
3-element Array{Int64,1}:
  1
  2
  3
```
<table>
<thead>
<tr>
<th>Summary</th>
<th>Python</th>
<th>C++</th>
<th>Julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Overhead causes ~10x slow down</td>
<td>Excellent</td>
<td>Comparable to C++</td>
</tr>
<tr>
<td>Scalability</td>
<td>Good, Variable on different operations</td>
<td>Excellent, Requires fine-tuning</td>
<td>Excellent, Unpredictable garbage collector</td>
</tr>
<tr>
<td>Portability</td>
<td>One-line scheduler conversion</td>
<td>One-line, Requires MPI for distribution</td>
<td>Simple, Distributed memory requires code changes</td>
</tr>
<tr>
<td>Runs on Summit</td>
<td>Mostly</td>
<td>Yes</td>
<td>Yes, with comprises</td>
</tr>
<tr>
<td>Programmability</td>
<td>Excellent</td>
<td>More complicated for non-CS people</td>
<td>Straightforward, but new</td>
</tr>
</tbody>
</table>
Conclusion

• First parallel and fastest implementation
• First to incorporate both theoretical improvements
• Implementations available on github.com/jkwoods

• Python is workable
• C++ is classic
• Julia is very cool and overlooked