
Building Parallel Abstractions to DCA++ Scientific
Software by Taking Advantage of HPX and GPUDirect

Weile Wei1, A. Chatterjee2, O. Hernandez2, H. Kaiser1

1. Louisiana State University
2. Oak Ridge National Laboratory

● The parallel abstraction optimization was supported by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by U.S. DOE, Office of Science, Advanced Scientific Computing Research
(ASCR) and Basic Energy Sciences (BES), Division of Materials Science and Engineering.

● This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

SciDAC: Computational Framework for Unbiased Studies of
Correlated Electron Systems (CompFUSE)

 Thomas Maier (ORNL)
 Ed. D'Azevedo (ORNL)
 Ying Wai Li (LANL) [former ORNL]

Authors would like to thank:

Giovanni Balduzzi (ETH Zurich)
John Biddiscombe (CSCS)

CompFUSE: https://compfuse.ornl.gov

Outline
○ Quantum Monte Carlo solver application: DCA++

○ Threading abstraction using HPX to parallelize computations
๏ HPX runtime system
๏ Performance implications of using HPX over C++ Standard threads

○ Optimized distributed computing abstraction on & across Summit nodes
๏ Using GPUDirect RDMA (NVLink)
๏ To address memory bound challenges in DCA++

○ Ongoing efforts
๏ Multi platform support for QMC applications
๏ Using APEX + HPX Runtime → in depth visualization of kernels

DCA ++ (Dynamical Cluster Approximation)
• Scientific software for solving quantum many-body problems

• A numerical simulation tool to predict behaviors of co-related quantum
materials (such as superconductivity, magnetism)

• Ported to world’s largest supercomputers, e.g. Titan, Summit, Cori, Piz
Daint (CSCS) sustaining many petaflops of performance.

[1] DCA++ 2019. Dynamical Cluster Approximation. https://github.com/CompFUSE/DCA [Licensing provisions: BSD-3-Clause]
[2] Urs R. Hähner, Gonzalo Alvarez, Thomas A. Maier, Raffaele Solcà, Peter Staar, Michael S. Summers, and Thomas C. Schulthess, DCA++: A software framework to
solve correlated electron problems with modern quantum cluster methods, Comput. Phys. Commun. 246 (2020) 106709.

DCA++: Primary workflow

1. Coarse Graining
(Calculating Green’s Function)

2. Quantum Monte Carlo solver
(QMC)

Green’s Function
[G0]

Initial Green’s Function
& Markov Chain

Iterative Convergence Algorithm
Coarse-grained

Green’s Function
[G]

two particle
Green’s Function

[G4]

DCA++ : Quantum Monte Carlo Solver

Imagine: 2D space with lots of points on it (measurements)

Walkers → 1. picks these measurements at random
 2. performs computation (mostly DGEMMs)
 3. sends matrices to accumulator (Producer)

Accumulators → 1. Feeds in the matrices from the walkers
 2. Computes [G2] for next iteration (Consumer)
 3. Also computes G4. → [G2] * [G2]

[all computation happens on both GPU and CPU sides]

DCA++ : Threaded QMC solver

N1

N3

N4

Walker 1

Acc. 3

Acc. 1

Walker 2

Acc. 2

N2 N2

N1

N3

N4

GN2’

GN2’’

GN2’’’

Green’s
Function

[G]

[G]

[G]

[G]

[G]

GN2

GN1

GN3

GN4

MPI communication
among different nodes

>106 samples

Threading on node MPI communication
among different nodes

Threading abstraction
w/ HPX runtime system

Threading abstraction for QMC Solver

std::thread

Custom-made Thread pool

HPX::thread

switch at compile time via user-input
HPX_DIR=$HPX_PATH
DCA_WITH_HPX=ON

Figure: workflow of thread-pool. Adding hpx option does not
change API of custom-made thread pool in DCA++ due to HPX is

C++ standard compliant

HPX - A General Purpose Runtime System
• Widely portable (Platforms / Operating System)

• Unified and standard-conforming C++ API and more ...

• Explicit support for hardware accelerators and vectorization

• Boost license and has an open, active, and thriving developer community

• Domains: Astrophysics, Coastal Modeling, Distributed Machine Learning

• Funded through various agencies:

https://github.com/STEllAR-GROUP/hpx

Yes, we accept Pull Requests !!!

HPX Runtime System

HPX - C++ standard compliant and more
● C++ standard library API compatible: (selected)

● std::thread hpx::thread

● std::mutex hpx::mutex

● std::future hpx::future

● std::async hpx::async

● std::function
.
.
.

hpx::function
.
.
.

● Extend standard APIs where needed (compatibility is preserved)

HPX thread pool

Kernel
Space

User
Space HPX

thread scheduler
HPX

thread scheduler

CPU CPU CPU CPU

HPX thread is a lightweight
user-level thread
● ~1000x faster context

switch than OS thread

Nanosecond level

Microsecond level

QMC solver w/ custom-made thread pool

1. // original implementation w/ custom thread pool
2. std::vector<std::future<void>> futures;
3.
4.
5. auto& pool = dca::parallel::ThreadPool::get_instance();
6.
7.
8. for (int i = 0; i < thread_task_handler_.size(); ++i) {
9. if (thread_task_handler_.getTask(i) == "walker")

10. futures.emplace_back(pool.enqueue(&ThisType::startWalker,
this, i));

11.
12. // else if handle other conditions...
13. }

QMC solver w/ threading abstraction

1. // new implementation w/ threading abstraction
2. std::vector<dca::parallel::thread_traits::future_type<void>> futures;
3. // switch to std::future or hpx::future at compile time
4.
5. auto& pool = dca::parallel::ThreadPool::get_instance();
6.
7.
8. for (int i = 0; i < thread_task_handler_.size(); ++i) {
9. if (thread_task_handler_.getTask(i) == "walker")

10. futures.emplace_back(pool.enqueue(&ThisType::startWalker,
this, i));

11.
12. // else if handle other conditions...
13. }

Synchronization primitives in thread-pool class

std::thread
namespace dca { namespace parallel {

struct thread_traits {
 template <typename T>
 using future_type = hpx::lcos::future<T>;
 using mutex_type = hpx::lcos::local::mutex;
 using condition_variable_type =

 hpx::lcos::local::condition_variable;
 using scoped_lock =

 std::lock_guard<mutex_type>;
 using unique_lock =

std::unique_lock<mutex_type>;
}
} // namespace parallel
}; // namespace dca

HPX thread
namespace dca { namespace parallel {

struct thread_traits {
 template <typename T>
 using future_type = std::future<T>;
 using mutex_type = std::mutex;
 using condition_variable_type =

 std::condition_variable;
 using scoped_lock =

 std::lock_guard<mutex_type>;
 using unique_lock =

 std::unique_lock<mutex_type>;
}
} // namespace parallel
}; // namespace dca

Runtime Comparison

● Configuration: 1 Summit node
(6 MPI ranks; 7 CPUs + 1 GPU per rank)

● Results for 100k monte carlo measurements
with error bars obtained from 5
independent executions.

● We observed 21% speedup using HPX
threading in DCA++ threaded QMC solver on
Summit over C++ std threads.

● The speedup is due to faster context switch
and scheduler and less synchronization
overhead in HPX runtime system.

21% speedup

Optimized distributed computing with
NVIDIA GPUDirect RDMA on Summit

Memory bound challenge and solution
Focus: Memory usage of the two-particle Green’s Function (G4) computation

● In general, size of G2 is ~30 MB,
while G4 is 12 GB.

● V100 HBM on Summit: 16 GB

● Solution: Broadcasting each G2[][]
matrix to all other ranks:
○ Traditional method
○ GPUDirect RDMAFig. : Roofline plot of a single NVIDIA V100 GPU running

DCA++ at production level on Summit (OLCF).

G. Balduzzi, A. Chatterjee, Y.W. Li, P. Doak, U. Haehner, Ed. Azevedo, T. Maier, T. Schulthess. Accelerating DCA++
(Dynamical Cluster Approximation) Scientific Application on the Summit supercomputer. PACT 2019.

M
em

or
y

Bou
nd

Compute
Bound

P9

NVLink
50 GB/s

Nvidia
V100 GPU

IBM
CPU

P9
HBM
16 GB

HBM
16 GB

HBM
16 GB

HBM
16 GB

HBM
16 GB

HBM
16 GB

Summit Node Layout

64 GB/s

NIC

16GB/s

12.5 GB/s

Transfer G2 around

Rank 0 Rank 1 Rank 0 Rank 1

Traditional method GPUDirect method

NVLink
50 GB/s

Nvidia
V100 GPU

IBM
P9

cudaMemcpy()

GPUDirect

We avoid expensive memory copies and use
high-speed network, the NVLink.

Memory copy everywhere: Device2Host,
H2D, network transfer, etc.

Cuda
array

Performance Comparison

~1 MB ~30 MB ~100 MB ~1 GB

15x 17x 17x
up to 17x speedup!

Distributed G4 implementation

G0 G1 G2 G3

G4

Rank 1Rank 0 Rank 3Rank 2

Original DCA++

Each rank keeps a
private and full copy
of G4.

All_reduce

Rank 1

G4(0,0)

G0

Rank 0

G4(1,1)

G3

Rank 3

G4(1,0)

G2

Rank 2

G4(0,1)

DistG4 solution G1

G4

Memory usage reduced.
Each rank keeps 1/n G4
(n = #ranks).

Enabling MORE science

Memory usage
per GPU

Max. memory
available for
storing final G4
on one Summit
node

Original
method

16 GB

Full, no more

Distributed G4
w/ ← same science case

96 GB

⅙ is used, a lot left

Distributed G4
w/ larger science case

Each GPU is fully used

Then much more!

What if much
larger

96 * X
(nodes) GB

. . .

. . .

. . .

X nodes

6 X more per node w.
DistG4 implementation!

Summary
• HPX light-weight threads

○ Added HPX threading support and maintained same API of
the thread pool in DCA++

○ 21% speedup using HPX threading in DCA++ threaded QMC
solver on Summit over C++ std threads

• GPUDirect RDMA
○ Implemented ring algorithm using GPUDirect capability

enabling us to explore large and complex science problems

Ongoing work
• Multi platform effort:

○ Porting DCA++ w/ HPX to Arm64, Intel x86-64 and more...
• HPX task continuation:

○ Wrapping DCA++ cuda kernel into HPX future → overlapping
communication and computation

• APEX + HPX Runtime:
○ Profiling DCA++ to identify bottlenecks and potential

improvement in performance
• GPUDirect RDMA:

○ Adding bidirectional ring communication methods to utilize
more bandwidth

Building Parallel Abstractions to
DCA++ Scientific Software by Taking

Advantage of HPX and GPUDirect
Weile Wei

PhD Student, Louisiana State University

Research Collaborator, Oak Ridge National Laboratory

wwei9@lsu.edu

