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Outline
○ Quantum Monte Carlo solver application: DCA++

○ Threading abstraction using HPX to parallelize computations
๏ HPX runtime system
๏ Performance implications of using HPX over C++ Standard threads

○ Optimized distributed computing abstraction on & across Summit nodes
๏ Using GPUDirect RDMA (NVLink)
๏ To address memory bound challenges in DCA++

○ Ongoing efforts
๏ Multi platform support for QMC applications
๏ Using APEX + HPX Runtime → in depth visualization of kernels 



DCA ++ (Dynamical Cluster Approximation)
• Scientific software for solving quantum many-body problems

• A numerical simulation tool to predict behaviors of co-related quantum 
materials (such as superconductivity, magnetism)

• Ported to world’s largest supercomputers, e.g. Titan, Summit, Cori, Piz 
Daint (CSCS) sustaining many petaflops of performance.

[1] DCA++ 2019. Dynamical Cluster Approximation. https://github.com/CompFUSE/DCA [Licensing provisions: BSD-3-Clause]
[2] Urs R. Hähner, Gonzalo Alvarez, Thomas A. Maier, Raffaele Solcà, Peter Staar, Michael S. Summers, and Thomas C. Schulthess, DCA++: A software framework to 
solve correlated electron problems with modern quantum cluster methods, Comput. Phys. Commun. 246 (2020) 106709.



DCA++: Primary workflow 

1. Coarse Graining 
(Calculating Green’s Function)

2. Quantum Monte Carlo solver 
(QMC)
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DCA++ : Quantum Monte Carlo Solver

Imagine: 2D space with lots of points on it (measurements)

Walkers → 1. picks these measurements at random
                     2. performs computation (mostly DGEMMs)
                     3. sends matrices to accumulator (Producer)

Accumulators → 1. Feeds in the matrices from the walkers 
                                2. Computes [G2] for next iteration (Consumer)
                                3. Also computes G4. → [G2] * [G2]

[all computation happens on both GPU and CPU sides]



DCA++ : Threaded QMC solver
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Threading abstraction 
w/ HPX runtime system



Threading abstraction for QMC Solver

std::thread

Custom-made Thread pool

HPX::thread

switch at compile time via user-input
HPX_DIR=$HPX_PATH 
DCA_WITH_HPX=ON

Figure: workflow of thread-pool. Adding hpx option does not 
change API of custom-made thread pool in DCA++ due to HPX is 

C++ standard compliant 



HPX - A General Purpose Runtime System
• Widely portable (Platforms / Operating System)

• Unified and standard-conforming C++ API and more ...

• Explicit support for hardware accelerators and vectorization

• Boost license and has an open, active, and thriving developer community 

• Domains: Astrophysics, Coastal Modeling, Distributed Machine Learning

• Funded through various agencies:

https://github.com/STEllAR-GROUP/hpx

Yes, we accept Pull Requests !!!



HPX Runtime System



HPX - C++ standard compliant and more
● C++ standard library API compatible: (selected)

● std::thread hpx::thread

● std::mutex hpx::mutex

● std::future hpx::future

● std::async hpx::async

● std::function
.
.
.

hpx::function
.
.
.

● Extend standard APIs where needed (compatibility is preserved)



HPX thread pool
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HPX thread is a lightweight 
user-level thread
● ~1000x faster context 

switch than OS thread

Nanosecond level
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QMC solver w/ custom-made thread pool

1. // original implementation w/ custom thread pool
2.   std::vector<std::future<void>> futures;
3.
4.
5.   auto& pool = dca::parallel::ThreadPool::get_instance();  
6.
7.
8.   for (int i = 0; i < thread_task_handler_.size(); ++i) {
9.       if (thread_task_handler_.getTask(i) == "walker")

10.          futures.emplace_back(pool.enqueue(&ThisType::startWalker, 
this, i));

11.
12.       // else if handle other conditions... 
13.   }



QMC solver w/ threading abstraction

1.   // new implementation w/ threading abstraction
2.   std::vector<dca::parallel::thread_traits::future_type<void>> futures;
3.   // switch to std::future or hpx::future at compile time
4.
5.   auto& pool = dca::parallel::ThreadPool::get_instance();  
6.
7.
8.   for (int i = 0; i < thread_task_handler_.size(); ++i) {
9.       if (thread_task_handler_.getTask(i) == "walker")

10.          futures.emplace_back(pool.enqueue(&ThisType::startWalker, 
this, i));

11.
12.       // else if handle other conditions... 
13.   }



Synchronization primitives in thread-pool class

std::thread
namespace dca { namespace parallel {
 
struct thread_traits {
    template <typename T>
    using future_type           = hpx::lcos::future<T>;
    using mutex_type           = hpx::lcos::local::mutex;
    using condition_variable_type   = 

         hpx::lcos::local::condition_variable;
    using scoped_lock           = 

         std::lock_guard<mutex_type>;
    using unique_lock          = 

std::unique_lock<mutex_type>;
}
} // namespace parallel
}; // namespace dca 

HPX thread
namespace dca {  namespace parallel {

struct thread_traits {
    template <typename T>
    using future_type               = std::future<T>;
    using mutex_type               = std::mutex;
    using condition_variable_type   = 

     std::condition_variable;
    using scoped_lock               = 

     std::lock_guard<mutex_type>;
    using unique_lock               = 

     std::unique_lock<mutex_type>;
}
} // namespace parallel
}; // namespace dca



Runtime Comparison

● Configuration: 1 Summit node 
(6 MPI ranks; 7 CPUs + 1 GPU per rank)

● Results for 100k monte carlo measurements 
with error bars obtained from 5 
independent executions. 

● We observed 21% speedup using HPX 
threading in DCA++ threaded QMC solver on 
Summit over C++ std threads. 

● The speedup is due to faster context switch 
and scheduler and less synchronization 
overhead in HPX runtime system.

21% speedup



Optimized distributed computing with
NVIDIA GPUDirect RDMA on Summit



Memory bound challenge and solution
Focus: Memory usage of the two-particle Green’s Function (G4) computation

● In general, size of G2 is ~30 MB, 
while G4 is 12 GB.

● V100 HBM on Summit: 16 GB 

● Solution: Broadcasting each G2[][] 
matrix to all other ranks:
○ Traditional method
○ GPUDirect RDMAFig. : Roofline plot of a single NVIDIA V100 GPU running 

DCA++ at production level on Summit (OLCF).

G. Balduzzi, A. Chatterjee, Y.W. Li, P. Doak, U. Haehner, Ed. Azevedo, T. Maier, T. Schulthess. Accelerating DCA++ 
(Dynamical Cluster Approximation) Scientific Application on the Summit supercomputer. PACT 2019.
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Transfer G2 around

Rank 0 Rank 1 Rank 0 Rank 1

Traditional method GPUDirect method

NVLink 
50 GB/s

Nvidia 
V100 GPU

IBM 
P9

cudaMemcpy()

GPUDirect

We avoid expensive memory copies and use 
high-speed network, the NVLink. 

Memory copy everywhere: Device2Host, 
H2D, network transfer, etc.

Cuda 
array



Performance Comparison

~1 MB ~30 MB ~100 MB ~1 GB

15x 17x 17x
up to 17x speedup!



Distributed G4 implementation
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Each rank keeps a 
private and full copy 
of G4.

All_reduce
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Memory usage reduced. 
Each rank keeps 1/n G4 
(n = #ranks).



Enabling MORE science

Memory usage 
per GPU

Max. memory 
available for 
storing final G4 
on one Summit 
node

Original 
method

16 GB

Full, no more

Distributed G4
w/ ← same science case

96 GB

⅙ is used, a lot left

Distributed G4 
w/ larger science case

Each GPU is fully used

Then much more!

What if much 
larger

96 * X 
(nodes) GB

. . .

. . .

. . .

X nodes

6 X more per node w. 
DistG4 implementation!



Summary
• HPX light-weight threads

○ Added HPX threading support and maintained same API of 
the thread pool in DCA++ 

○ 21% speedup using HPX threading in DCA++ threaded QMC 
solver on Summit over C++ std threads 

• GPUDirect RDMA
○ Implemented ring algorithm using GPUDirect capability 

enabling us to explore large and complex science problems



Ongoing work
• Multi platform effort:

○ Porting DCA++ w/ HPX to Arm64, Intel x86-64 and more...
• HPX task continuation:

○ Wrapping DCA++ cuda kernel into HPX future → overlapping 
communication and computation

• APEX + HPX Runtime:
○ Profiling DCA++ to identify bottlenecks and potential 

improvement in performance
• GPUDirect RDMA:

○ Adding bidirectional ring communication methods to utilize 
more bandwidth 
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