Aurora – Exascale at Argonne

P3HPC Forum Meeting, Sept 1-2
Scott Parker
Argonne Leadership Computing Facility

www.anl.gov
Aurora: A High-level View

- Intel-Cray machine arriving at Argonne in 2021:
 - Sustained Performance > 1 Exaflops
 - Greater than 10 PB of total memory

- Node has Intel Xeon processors and Intel Xe GPUs:
 - 2 Xeons (Sapphire Rapids)
 - 6 GPUs (Ponte Vecchio [PVC])
 - Unified Memory Architecture across CPUs and GPUs

- Cray Slingshot fabric and Shasta platform:
 - 8 endpoints per node

- Novel high-performance filesystem:
 - Distributed Asynchronous Object Store (DAOS)
 - ≥ 230 PB of storage capacity
 - Bandwidth of > 25 TB/s
 - Lustre
 - 150 PB of storage capacity
 - Bandwidth of ~1TB/s
Evolution of Intel GPUs

The Road to **Xe**

- Discrete
- Chipset
- Integrated
Intel GPU Architecture
One Architecture and 4 Micro Architectures

- Xe\textsubscript{HPC}
- Xe\textsubscript{HP}
- Xe\textsubscript{HPG}
- Xe\textsubscript{LP}

- HPC EXASCALE
- DATA CENTER / AI
- ENTHUSIAST
- MID RANGE
- INTEGRATED + ENTRY

Teraflops to Petaflops
Current Intel GPUs

- Xe LP
 - Platforms: Tiger Lake, DG1, SG1
 - Integrated & discrete

- Gen 11
 - Platforms: Ice Lake
 - Integrated

- Gen 9
 - Platforms: Skylake
 - Integrated
 - Double precision peak performance: 100-300 GF

- All have relatively low FP64 performance by design due to power and space limits
XE Execution Unit

The EU executes instructions:
- Register file
- Multiple issue ports
- Vector pipelines:
 - Floating Point
 - Integer
 - Extended Math
 - FP64 (optional)
 - Matrix Extension (XMX) (optional)
- Thread control
- Branch
- Send (memory)
XE Subslice

A sub-slice contains:
• 16 EUs
• Thread dispatch
• Instruction cache
• L1, texture cache, and share local memory
• Load/Store
• Fixed Function (optional)
 • 3D sampler
 • Media Sampler
 • Ray Tracing
Xe 3D/Compute Slice

A slice contains:
- Variable number of subslices
- 3D Fixed Function (optional)
 - Geometry
 - Raster
High Level Xe Architecture

- Xe GPU is composed of:
 - 3D/Compute Slice
 - Media Slice
 - Memory Fabric / Cache
XE Memory Fabric

Coherent Scalable Interconnect Fabric
• L3 + Rambo Cache (optional)
• SoC infrastructure
 • PCIe
 • Display (optional)
 • Memory Controller
 • Local Memory (optional)
Cray Slingshot Network

- Slingshot is next generation scalable interconnect by Cray
 - 8th major generation
- Builds on Cray’s expertise in high performance network following
 - Gemini (Titan, Blue Waters)
 - Aries (Theta, Cori)
 - 5 hop dragonfly topology
- Slingshot introduces:
 - Congestion management
 - Traffic classes
 - 3 hop dragonfly

https://www.cray.com/products/computing/slingshot
https://www.cray.com/resources/slingshot-interconnect-for-exascale-era
Dragonfly Topology

- Two layer all-to-all topology
- Nodes are organized into a number of groups
- All-to-all connectivity between nodes within the groups
- Groups are connected together in an all-to-all fashion at the group level

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
Distributed Asynchronous Object Store (DAOS)

- Primary storage system for Aurora
- High performance and capacity:
 - ≥ 230 PB capacity
 - ≥ 25 TB/s
- Persistent storage, not a burst buffer
- Provides compatibility with existing I/O models such as POSIX, MPI-IO and HDF5
- Open source storage solution
- Provides a flexible storage API that enables new I/O paradigms
DAOS and Lustre

- Aurora will provide both DOAS and Lustre file systems
- User see single storage namespace which is in Lustre
 - Links point to DAOS containers within the /project directory
 - DAOS aware software interpret these links and access the DAOS containers
- Data resides in a single place (Lustre or DAOS)
 - Explicit data movement, no auto-migration
- Suggested storage locations
 - Source and binaries in Lustre
 - Bulk data in DAOS
Programming Models for Exascale Systems

- Applications will be using a variety of programming models for Exascale:
 - CUDA
 - OpenCL
 - HIP
 - OpenACC
 - OpenMP
 - DPC++/SYCL
 - Kokkos
 - Raja

- Not all systems will support all models
Programming Models For Aurora

- Aurora applications may use:
 - CUDA
 - OpenCL
 - HIP
 - OpenACC
 - OpenMP
 - DPC++/SYCL
 - Kokkos
 - Raja

![Logos for different programming models](image-url)
Possible Paths to Aurora

Aurora Models

Vendor Supported Programming Models

ECP Provided Programming Models

OpenMP w/o target
OpenMP with target
OpenACC
OpenCL
CUDA
Kokkos
Raja

OpenMP
OpenCL
DPC++/ SYCL
HIP
Kokkos
Raja
oneAPI

- Industry specification from Intel (https://www.oneapi.com/spec/)
 - Language and libraries to target programming across diverse architectures (DPC++, APIs, low level interface)

- Intel oneAPI products and toolkits (https://software.intel.com/ONEAPI)
 - Implementations of the oneAPI specification and analysis and debug tools to help programming
Aurora Software Stack

Languages:
- Fortran (with OpenMP 5)
- C/C++ (with OpenMP 5)
- DPC++
- Python

Libraries:
- oneAPI MKL (oneMKL)
- oneAPI Deep Neural Network Library (one DNN)
- oneAPI Data Analytics Library (oneDAL)
- MPI

Tools:
- Intel Advisor
- Intel Vtune
- Intel Inspector
Aurora Testbeds

- **Intel DevCloud**
 - Provides free access to GPU hardware and oneAPI software
 - https://devcloud.intel.com/oneapi/get-started/

- **Local Setup**
 - Download Intel oneAPI public beta
 - Run on Intel CPU with integrated graphics

- **Argonne JLSE testbeds for Aurora**
 - 20 Nodes of Intel Xeons with Gen9 Iris Pro integrated GPU
 - DG1 nodes
 - Intel’s Aurora oneAPI SDK [NDA required]
Questions?